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Abstract
The relationship between three probability distributions and their maximizable
entropy forms is discussed without postulating entropy property. For this
purpose, the entropy I is defined as a measure of uncertainty of the probability
distribution of a random variable x by a variational relationship dI =
dx − dx, a definition underlying the maximization of entropy for corresponding
distribution.

PACS numbers: 05.20.−y, 02.50.−r, 02.50.Tt

1. Introduction

It is well known that entropy and information can be considered as measures of uncertainty
of probability distribution. However, the functional relationship between entropy and
the associated probability distribution has since long been a question in statistical and
informational science. There are many relationships established on the basis of the properties
of entropy. In the conventional information theory and some of its extensions, these properties
are postulated, such as the additivity and the extensivity in the Shannon information theory.
The reader can refer to [1–8] to see several examples of entropies proposed on the basis of
postulated entropy properties. Among all these entropies, the most famous one is the Shannon
informational entropy (S = −∑

i pi ln pi) [2], which was almost the only one widely used
in equilibrium thermodynamics (Boltzmann–Gibbs entropy) and in nonequilibrium dynamics
(Kolmogorov–Sinai entropy for example). But the question remains open in the scientific
community about whether or not Shannon entropy is the unique useful measure of statistical
uncertainty or information [9].

The origin of this question can be traced back to the principle of maximum entropy
(maxent) by Jaynes [10] who claimed the Shannon entropy was singled out to be the only
consistent measure of uncertainty to be maximized in maxent. In view of the fact that this
uniqueness was argued from the Shannon postulates of information property [2], one naturally
asks what happens if some of these properties are changed. Some of the entropies in the list of
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[1] are found by mathematical considerations which change the logic of Shannon. Recently,
a nonextensive statistics (NES) [6–8] proposed to use some entropies for thermodynamics
and stochastic dynamics of certain nonextensive systems. NES has given rise to a large
number of papers with very different viewpoints dealing with equilibrium and nonequilibrium
systems and incited considerable debate [11–13] within the statistical physics community.
Some key questions in the debate are: whether or not it is necessary to replace Boltzmann–
Gibbs–Shannon entropy with other ones in different physical situation? What are the possible
entropy forms which can be maximized in order to derive probability distribution according
to maxent?

One remembers that in the actual applications of maxent the used entropy forms are either
directly postulated or derived from postulated properties of entropy [1–8]. The correctness
of these entropies is then verified through the validity of derived probability distributions. In
the present work, we will invert this reasoning in order to find maximizable entropy form
directly from known probability distributions without postulating the properties of entropy.
For this purpose, we need a generic entropy definition underlying in addition variational
approach or maxent. Inspired by the first and second laws of thermodynamics for reversible
process, we introduce a variational definition of entropy I such as dI = dx − dx for the
measure of probabilistic uncertainty of the simple situation with only one random variable
x. We stress that the main objective of this work is to show the non-uniqueness of Shannon
entropy as maximizable uncertainty measure. Other entropy forms must be introduced for
different probability distributions. We would like to stress also that this is a conceptual work
tackling the mathematical form of entropy without considering the detailed physics behind the
distribution laws used in the calculations. In what follows, we first talk about three probability
distributions and their invariant properties. The maximizable entropy form for each of them
is then derived thanks to the definition dI = dx − dx.

2. Three probability laws and their invariance

In this section, by some trivial calculations one can find in textbooks, we want to underline the
fact that a probability distribution may be derived uniquely from its invariance. By invariance
of a function f (x), we means that the dependence on x is invariant at transformation of x into
x′, i.e., f (x ′)µf (x). We consider three invariances corresponding to exponential, power law
and q-exponential distributions, respectively.

2.1. Translation invariance and exponential law

Suppose that f (x) is invariant by a translation of x → x + b, i.e.,

f (x + b) = g(b)f (x), (1)

where g(b) depends on the form of f (x). We have df (x+b)

db
= df (x+b)

d(x+b)
= g′(b)f (x) and df (x)

dx
=

g′(0)f (x) or df (x)

f
= g′(0) dx (b = 0). This means

ln f (x) = g′(0)x + c or f (x) = ceg′(0)x, (2)

where c is some constant. If f (x) gives a probability such as p(x) = 1
Z
f (x) where

Z = ∑
x f (x), the normalization condition

∑
x p(x) = 1 will make p(x) strictly invariant

versus the transformation x → x ′ = x + b, i.e., p(x ′) = 1
Z′ f (x ′) = 1

Z
f (x) = p(x) since

Z′ = ∑
x ′ f (x ′) = ∑

x f (x + b) = g(b)
∑

x f (x) = Zg(b).
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2.2. Scale invariance and power law

Now suppose that f (x) is scale invariant, we should have

f (bx) = g(b)f (x), (3)

where b is the scale factor of the transformation. We make following calculation df (bx)

db
=

df (bx)

d(bx)
x = g′(b)f (x) to get df (x)

dx
x = g′(1)f (x), which means

f (x) = cxg′(1). (4)

This kind of laws is widely observed in nature for different dynamical systems such as language
systems [14] and scale free networks [15] among many others [16]. The well-known Levy
flight for large x is a good example of power law with g′(1) = −1 − α where 0 < α < 2.

2.3. The q-exponential and its invariance properties

Here we would like to mention a probability which has attracted a lot of attention in the last
years,

f (x) = c[1 + aβx]
1
a , (5)

where a and β are some constants. The Zipf–Mandelbrot law f (x) = c[1 + x]−α observed
in textual systems and other evolutionary systems [17] can be considered as a kind of q-
exponential law. Another example of this law is the equilibrium thermodynamic distribution
for finite systems in equilibrium with a finite heat bath, where a can be related to the number
of elements N of the heat bath and tends to zero if N is very large [18], which implies
f (x) = c[1 + aβx]

1
a −→

a→0
c eβx .

This distribution is not a power law in the sense of equation (4). It has neither
the scale invariance nor the translation invariance mentioned above. The operator on x
that keeps f (x) invariant is a generalized addition x + ab = x + b + aβxb [19], i.e.
f (x + ab) = c[1 + aβ(x + b + aβxb)]

1
a = [1 + aβb)]

1
a c[1 + aβx)]

1
a = g(b)f (x), where

g(b) = [1 + aβb)]
1
a .

The derivation of equation (5) from f (x + ab) = g(b)f (x) is given as follows. First,
we make a derivative such as df (x+ab)

db
= df (x+ab)

d(x+ab)

d(x+ab)

db
= df (x+ab)

d(x+ab)
(1 + aβx) = g′(b)f (x).

Then let b = 0, we get df (x)

dx
(1 + aβx) = g′(0)f (x) which means df (x)

f (x)
= g′(0) dx

(1+aβx)
or

ln f = ln(1 + aβx)1/a + c or equation (5) with β = g′(0).

3. A definition of entropy as a measure of dynamical uncertainty

Suppose we have a random (discrete) variable xi with a probability distribution pi = 1
Z
f (xi),

where i is the state index. The average of xi is given by x = ∑
i xipi and the normalization

is
∑

i pi = 1. The uncertainty in a probability distribution of x can be measured by many
quantities. The standard deviation σ or the variance σ 2 = x2 − x2, for example, can surely
be used if they exist. Shannon entropy, as some of other known entropy forms, can also be
used as a measure of uncertainty of any pi. But certainly any given entropy form, including
Shannon one, cannot be maximized for any distribution pi according to maxent rules, which
can be seen below. The main task of this work, let us recall it, is to search for a general
definition of uncertainty measure underlying maxent, in such a way that each derived entropy
can be maximized to give the corresponding distribution. Here, we propose a quite general
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measure I by a variational definition as follows:

dI = dx − dx =
∑

i

xi dpi, (6)

where dx = ∑
i pi dxi . This definition has been in a way inspired by the first and

second laws of thermodynamics in equilibrium thermodynamics. Considering the definition
of internal energy E = ∑

i piEi , where Ei is the energy of the microstate i with
probability pi, we can write δE = ∑

i δpiEi +
∑

i piδEi = ∑
i δpiEi + δEi in which

δEi = ∑
i piδEi = ∑

j

(∑
i pi

∂Ei

∂qj

)
δqj is the work done to the system by external forces

Fj = ∑
i pi

∂Ei

∂qj
, where qj is the extensive variables such as volume, distance or electrical

polarization. According to the first law of thermodynamics, the quantity
∑

i δpiEi = δE−δEi

is the heat change in the system, that is,
∑

i δpiEi = δQ = T δS for a reversible process,
where S is the thermodynamic entropy and T is the absolute temperature. S has the following
variational relation:

δS = 1

T
(δE − δE). (7)

As is well known, S measures the dynamical disorder of the system or the uncertainty
of the probability distribution of energy in the dynamics. In contrast with another measure

σ 2 = E2 − E
2
, S can be maximized in maxent for equilibrium system to derive probability

distribution. At this point, we must mention a work by Plastino and Curado [20] on the
equivalence between the particular thermodynamic relation δS = βδĒ and maxent for
probability assignment. In order to obtain this heat–energy relationship from the first and
second laws of thermodynamics, they considered the particular reversible process affecting
only the microstate population, i.e., the distribution pi has a variation δpi due to a heat transfer
δQ = TδS. Although their variational approach from a particular process still needs further
justification, their conclusion is important and consequential. Not only have they shown
the equivalence between δS = βδĒ and maxent, they also reached a quite generic variational
principle by virtue of the fundamental laws of thermodynamics. To our opinion, as a variational
method, δS = βδĒ is much more general and powerful than maxent with originally a unique
maximizable measure, since it enables one to maximize other form of entropy if any for
equilibrium system, which opens the door for other development of statistical mechanics on
the basis of maxent for equilibrium system.

Coming back to equation (6) which is just an extension of equation (7) to arbitrary
random variables x and to arbitrary system (even out of equilibrium) and a generic definition
of maximizable uncertainty measure for any random variable. The maximizability of this
measure consists to put dx = 0 as discussed below.

The geometrical aspect of the uncertainty measure defined by equation (6) can be
illustrated in the examples of figure 1 which shows that dI and I are related to the width
of the distributions on the one hand, and to the form of the distribution on the other. dI is not
an increasing function of the distribution width. For example, dI = 0 for uniform distribution
whatever the width of p(x) = constant. This means that I is a constant.

4. Three probability distribution laws and their entropy

In this section, on the basis of the uncertainty measure defined in equation (6), we derive the
entropy functionals for the three probability laws discussed in section 2.

4
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x

p(x) p(x)

x

p(x)

x

Figure 1. Three geometrical representations of the variation dI defined in equation (6) for some
distributions. The hatched areas represent the value of the entropy variation dI = dx − dx =∑

i xidpi for each case. In general, dI for any increasing or decreasing part of a distribution curve
is the area between the p(x)-axis and the considered part. So in this figure, dI for any part of the
distribution curve is the area from the p(x)-axis to the left of the part. The sign of dI depends on
the way it is calculated. If it is calculated with increasing x, dI is positive for the increasing part
of p(x) since dpi > 0 (main parts of left panel) and negative for the decreasing part of p(x) since
dpi < 0 (right panel). In the middle panel, the hatched area is the difference of dIinc > 0 for the
increasing part and the dIdec < 0 for the decreasing part. Since the region of dIinc is smaller than
that of dIdec, the difference is negative. It is easily seen that dI = 0 if the width (uncertainty) of the
distribution is zero or if the distribution is uniform.

4.1. Translation invariant probability and Shannon entropy

The following calculation is trivial. From equation (6), for exponential distribution
pi = 1

Z
e−xi , we have

dI = −
∑

i

ln(piZ) dpi = −
∑

i

ln pi dpi − ln Z
∑

i

dpi = −
∑

i

ln pi dpi = −d
∑

i

pi ln pi

and

I = −
∑

i

pi ln pi + c.

This is Shannon information if the constant c is neglected. Within the conventional
statistical mechanics, this is the Gibbs formula for Clausius entropy. Remember that the
maximization of this entropy using Lagrange multiplier associated with expectation of x
yields exponential distribution law.

4.2. Scale invariant probability and entropy functional

We have in this case power law probability distribution pi,

pi = 1

Z
xi

−a, (8)

where Z = ∑
i x

−a
i . Put it into equation (6) to get

dI =
∑

i

(piZ)−1/a dpi = Z−1/a 1

1 − 1/a
d

∑
i

pi
1−1/a

= −Z−1/ad

[∑
i

pi
1−1/a/(1 − 1/a) + c

]
, (9)

5
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where c is an arbitrary constant. Since we are addressing a given system to find its entropy
form, Z can be considered as a constant for the variation in x (the reader will find below that
this constant can be given by the Lagrange multiplier in the maximum entropy formalism).
Hence we can write

I ∝
∑

i

pi
1−1/a/(1 − 1/a) + c. (10)

In order to determine c, we imagine a system with two states i = 1 and 2 with p1 = 0 and
p2 = 1. In this case, I = 0 so that(

0 + 1

1 − 1/a

)
+ c = 0, (11)

i.e.,

c = − 1

1 − 1/a
. (12)

We finally get

I =
∑

i p
1−1/a

i − 1

1 − 1/a
. (13)

Let q = 1
a

, we can write

I = −1 − ∑
i p

1−q

i

1 − q
= −

∑
i

pi − p
1−q

i

1 − q
. (14)

Note that this functional does not yield Shannon entropy for q → 1. As a matter of fact,
q must be positive and smaller than unity. I is negative if q is greater than unity or smaller
than zero, which does not make sense. For large x Lévy flight, for example, 1 < a < 3, so
1
3 < q < 1.

It can be calculated that

I = −
∑

i

pi − p
1−q

i

1 − q
= −

∑
i

pi

1 − p
−q

i

1 − q
= −

∑
i

pi

1 − 1
Z−q x

1 − q
= − 1 − Zqx

1 − q
. (15)

Its behavior with probability is shown in figure 2. The maximization of I conditioned with a
Lagrange multiplier β such as δ(I − βx) = 0 directly yields the power law of equation (8)
with β = Zq = Z1/a .

4.3. The entropy for q-exponential probability

We have seen above that the probability pi = c[1 − aβxi]
1
a had a special invariant property.

Let us express x as a function of pi and put it into equation (6) to get

dI =
∑

i

1 − (pi/c)
a

aβ
dpi = − 1

aβca

∑
i

pa
i dpi = − 1

aβca(1 + a)
d

(∑
i

p1+a
i + c

)
. (16)

By the same tricks for determining c in the above section, we get c = −1. So we can write

I = −
∑

i p
1+a
i − 1

a
= −

∑
i

pi − p
q

i

1 − q
. (17)

Where q = 1 + a and we have used the normalization
∑

i pi = 1. This is the Tsallis entropy
which tends to the Shannon entropy for q → 1 or a → 0. In this case, pi = c[1 − aβxi]

1
a

tends to an exponential distribution.

6
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Figure 2. The variation of the scale invariant entropy I = −∑2
i=1

pi−p
1−q
i

1−q
with p1 = p and p2 =

1-p for different q values. It can be shown that if q→0, S = − q
1−q

∑
p ln p → 0, and If q→1,

S =
∑

1−1
1−q

+
∑

ln p → ∞.

5. Concluding remarks

We have derived the entropy functionals for three probability distributions. This was done
on the basis of a variational definition of uncertainty measure, or entropy without postulating
entropy property (such as additivity) as in the usual information theory. The variational
definition dI = dx − dx is valid for any probability distributions of x as long as it has finite
expectation value. According to the results, the exponential probability has the Shannon

entropy, the power-law distribution has an entropy I = − 1−∑
i p

1−q

i

1−q
where 0 < q < 1, and the

q-exponential distribution has Tsallis entropy I = −∑
i

pi−p
q

i

1−q
where q is positive.

It is worth mentioning again that the present definition of entropy as a measure of
uncertainty offers the possibility of introducing the maximum entropy principle in a natural
way with Lagrange multipliers associated with expectation of the random variables. It is
easy to verify, with the above three entropies, that the maximum entropy calculus yields the
original probability distributions. This is not an ordinary and fortuitous mutual invertibility,
since the probability and the entropy are not reciprocal functions and the maximum entropy
calculus is not a usual mathematical operation. As a matter of fact, this invertibility between
entropy and probability resides in the variational definition dI = dx − dx. As discussed in
the section 3, dx can be considered as an extended work whatever the nature of x. So to
get the ‘equilibrium state’ or stable probability distribution, we can put dx = 0 just as in the
mechanical equilibrium condition where the vector sum of all forces acting on an object should
be 0, an underlying idea of the principle of virtual work in mechanics. We straightforwardly
get dI − β dx = 0 or d

(
I + α.

∑
i pi + βx

) = 0 if we add the normalization condition. This
reasoning leads in a more natural way to the maxent idea δS − βδĒ = 0 of Plastino and
Curado [20] for thermodynamic equilibrium.
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[3] Rényi A 1966 Calcul de probabilite (Dunod: Paris) p 522

Wehrl A 1978 Rev. Mod. Phys. 50 221
[4] Harvda J and Charvat F 1967 Kybernetika 3 30
[5] Daroczy Z 1970 Inform. Control 16 36
[6] Tsallis C 1988 J. Stat. Phys. 52 479
[7] Kaniadakis G 2000 Phys. Rev. E 296 405
[8] Wang Q A and Chaos 2001 Solitons Fractals 12 1431

Wang Q A 2003 Entropy 5
[9] Uffink J 1995 Can the maximum entropy principle be explained as a consistency requirement Studies Hist. Phil.

Mod. Phys. 26B 223–61
[10] Jaynes E T 1984 The evolution of Carnot’s principle The opening talk at the EMBO Workshop on Maximum

Entropy Methods in x-ray Crystallographic and Biological Macromolecule Structure Determination, (Orsay,
France, April) pp 24–8

Gibbs vs Boltzmann entropies 1965 Am. J. Phys. 33 391
Ray Smith C, Grandy W T Jr and Reidel D (ed) 1985 Where do we go from here? Maximum Entropy and

Bayesian Methods in Inverse Problems Publishing Company) pp 21–58
[11] Balian R and Nauenberg M 2006 Europhys. News 37 9

Luzzy R, Vasconcellos A R and Ramos J G 2006 Europhys. News 37 11
[12] Nauenberg M 2003 Phys. Rev. E 67 036114

Nauenberg M 2004 Phys. Rev. E 69 038102 Preprint cond-mat/0305365v1
[13] See also the special issue of Comptes Rendus Physique, 7, (2006) and the special issue of Europhysics news,

36/6 (2005)
[14] Li W 1992 Random texts exhibit Zipf’s-law-like word frequency distribution IEEE Trans. Inform. Theory

38 1842–5
[15] Newman M E J 2003 The structure and function of complex networks SIAM Rev. 45 167–256
[16] Newman M E J 2005 Power laws, Pareto distributions and Zipf’s law Contemp. Phys. 46 323–51
[17] Silagadze Z K 1999 Citations and the Zipf–Mandelbrot’s law, physics/9901035
[18] Terletskii Y P 1971 Statistical Physics (Amsterdam: North-Holland)
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